A Pharmacist’s Guide to a Once-Daily Treatment for Chronic Hepatitis B Infection

Chronic hepatitis B (CHB) can be a serious, potentially lifelong disease, and many patients will require long-term treatment to reduce the risk of disease progression.1,2 Patients with CHB may be at risk for developing severe liver complications, including cirrhosis and liver cancer.2 In addition, patients with CHB are aging and more likely than patients without CHB to have comorbidities, such as renal and bone diseases.3,4 These factors are important considerations when managing patients with CHB.3

Antiviral therapies are available for the treatment of CHB and have been shown to reduce the progression to advanced liver disease such as hepatocellular carcinoma and cirrhosis.5,6 Currently, the preferred first-line oral antiviral therapies for CHB as recommended by the American Association for the Study of Liver Diseases (AASLD) include tenofovir disoproxil fumarate (TDF), entecavir, and more recently, tenofovir alafenamide (TAF; VEMLIDY®).1 VEMLIDY was approved by the FDA in 2016 for the treatment of CHB in adults with compensated liver disease.7,8

In addition to the AASLD, guidelines from the European Association for the Study of the Liver (EASL) in 2017, and the Asian American Treatment Algorithm (AATA) in 2018, recommended VEMLIDY as one of the preferred first-line therapies to treat CHB.1,5,6

VEMLIDY is a novel, targeted prodrug of tenofovir that is efficiently delivered to the hepatocyte, the active site. VEMLIDY has a longer plasma half-life and greater plasma stability than TDF (another prodrug of tenofovir). VEMLIDY is approximately one-tenth the dose of TDF with 89% less systemic exposure to tenofovir.7,9,10

CLINICAL TRIALS

The efficacy and safety of VEMLIDY in the treatment of adults with CHB with compensated liver disease were established based on data from 2 randomized, double-blind, active-controlled, noninferiority studies, 108 and 110. Patients were randomized 2:1 to receive VEMLIDY 25 mg or TDF 300 mg. Study 108 included 425 patients who were hepatitis B envelope antigen negative (HBeAg−); Study 110 included 873 patients who were HBeAg positive (HBeAg+). The mean age of patients across both studies was 40 years (range, 18-80) for those who received

| TABLE 1. PATIENT CHARACTERISTICS FOR THE 1298 PATIENTS ENROLLED IN STUDIES 108 AND 110*45 |
|-----------------|-----------------|-----------------|
| | VEMLIDY | TDF |
| Mean age, y (range) | 40 (18-80) | 41 (18-72) |
| Male, n (%) | 544 (63) | 275 (64) |
| Asian, n (%) | 687 (79) | 333 (77) |
| White, n (%) | 167 (19) | 87 (20) |
| Black, n (%) | 7 (1) | 6 (1) |
| Other, n (%) | 5 (1) | 6 (1) |
| HBV genotype A, B, C, D, % | 6, 18, 48, 26 | 7, 20, 46, 24 |
| Mean HBV DNA, log₁₀ IU/mL (SD) | 7.0 (1.6) | 7.0 (1.6) |
| Median ALT, U/L (Q1, Q3) | 80 (56, 122) | 80 (53, 130) |
| Treatment-experienced, n (%)* | 211 (24) | 108 (25) |
| History of cirrhosis, n (%) | 65/636 (10) | 38/326 (12) |

ALT indicates alanine aminotransferase; HBV, hepatitis B virus; Q1, quartile 1; Q3, quartile 3; TDF, tenofovir disoproxil fumarate.

*Excluding interferon.

TABLE 2. PATIENT CHARACTERISTICS FOR 540 PATIENTS WHO ROLLED OVER TO OPEN-LABEL PHASE AT WEEK 9615

<table>
<thead>
<tr>
<th>Pooled Data</th>
<th>VEMLIDY (N = 360)</th>
<th>TDF (N = 180)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, y (range)</td>
<td>40 (19-73)</td>
<td>42 (18-67)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>228 (63)</td>
<td>111 (62)</td>
</tr>
<tr>
<td>Asian, n (%)</td>
<td>292 (81)</td>
<td>146 (81)</td>
</tr>
<tr>
<td>HBeAg+, n (%)</td>
<td>231 (61)</td>
<td>114 (63)</td>
</tr>
<tr>
<td>HBV genotype A, B, C, D, %</td>
<td>6, 25, 48, 20</td>
<td>6, 27, 44, 20</td>
</tr>
<tr>
<td>Mean HBV DNA, log₁₀ IU/mL (SD)</td>
<td>6.9 (1.5)</td>
<td>7.0 (1.6)</td>
</tr>
<tr>
<td>Median ALT, U/L (Q1, Q3)</td>
<td>84 (56, 127)</td>
<td>81 (54, 136)</td>
</tr>
<tr>
<td>Nucleos(t)ide-experienced, n (%)</td>
<td>86 (24)</td>
<td>43 (24)</td>
</tr>
<tr>
<td>Median eGFRₑₑₑ, mL/min (Q1, Q3)</td>
<td>105 (90, 122)</td>
<td>104 (86, 125)</td>
</tr>
<tr>
<td>Normal BMD status (T-score ≥–1.0), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td>236 (66)</td>
<td>112 (63)</td>
</tr>
<tr>
<td>Spine</td>
<td>205 (57)</td>
<td>93 (52)</td>
</tr>
</tbody>
</table>

ALT indicates alanine aminotransferase; BMD, bone mineral density; eGFRₑₑₑ, estimated glomerular filtration rate by Cockcroft-Gault (also referred to as estimated creatinine clearance [eCrCl]); HBeAg, hepatitis B envelope antigen; HBV, hepatitis B virus; Q1, quartile 1; Q3, quartile 3; TDF, tenofovir disoproxil fumarate.

IMPORTANT SAFETY INFORMATION

BOXED WARNING: POST TREATMENT SEvere ACUTE EXACERBATION OF HEPATITIS B

- Discontinuation of anti-hepatitis B therapy, including VEMLIDY, may result in severe acute exacerbations of hepatitis B. Hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months in patients who discontinue anti-hepatitis B therapy, including VEMLIDY. If appropriate, resumption of anti-hepatitis B therapy may be warranted.

Please see additional Important Safety Information for VEMLIDY throughout this article. Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.
VEMLIDY and 41 years (range, 18-72) for those who received TDF. The mean hepatitis B virus (HBV) DNA was 7.0 log_{10} IU/mL (SD = 1.6) for patients in the pooled study populations, regardless of treatment. 7,10,13 Additional baseline characteristics are listed in Table 1. 14,15

The original study design consisted of a 96-week, double-blind phase followed by an open-label phase to Week 144. The study design was later amended to extend the double-blind phase from 96 to 144 weeks and the open-label phase to Week 384. Before the amendment to the double-blind phase was implemented, 540 patients had already entered the open-label phase at Week 96; 360 patients remained on VEMLIDY and 180 patients switched from TDF to VEMLIDY at Week 96. 7,10,13,14 Baseline characteristics for patients in the Weeks 96 through 144 open-label phase are listed in Table 2. 15

The primary endpoint for Studies 108 and 110 was the proportion of patients with plasma HBV DNA levels less than 29 IU/mL (248/285) at Week 48; this was also one of the key secondary endpoints at Weeks 96 and 144. Patients were included if they had an index HBV DNA of 20,000 IU/mL or higher; an alanine aminotransferase (ALT) concentration greater than 60 U/L (males) or greater than >19 U/L for females) at baseline.

TABLE 2. VIRAL SUPPRESSION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

<table>
<thead>
<tr>
<th>Table 108: HBeAg– Patients</th>
<th>Table 110: HBeAg+ Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean baseline plasma HBV DNA: 5.8 log_{10} IU/mL</td>
<td>Mean baseline plasma HBV DNA: 7.6 log_{10} IU/mL</td>
</tr>
</tbody>
</table>

TABLE 4. ALT NORMALIZATION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

TABLE 3. VIRAL SUPPRESSION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

TABLE 3. VIRAL SUPPRESSION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

TABLE 4. ALT NORMALIZATION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

TABLE 3. VIRAL SUPPRESSION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

TABLE 4. ALT NORMALIZATION EFFICACY COMPARISON BETWEEN VEMLIDY AND TDF

Warnings and Precautions

- **Risk of Development of HIV-1 Resistance in HBV/HIV-1 Coinfected Patients:** Due to this risk, VEMLIDY alone should not be used for the treatment of HIV-1 infection. Safety and efficacy of VEMLIDY have not been established in HBV/HIV-1 coinfected patients.

Efficacy

In both treatment-naive and treatment-experienced patients with CHB and compensated liver disease, including many patients with cirrhosis and those who received prior entecavir or TDF, VEMLIDY should not be used for the treatment of HIV-1 infection.

IMPORTANT SAFETY INFORMATION (continued)

HIV antibody testing should be offered to all HBV-infected patients before initiating therapy with VEMLIDY, and, if positive, an appropriate antiretroviral combination regimen that is recommended for HBV/HIV-1 coinfected patients should be used.

Please see additional Important Safety Information for VEMLIDY throughout this article. Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.
demonstrated high rates of viral suppression and improved rates of ALT normalization compared with TDF through 3 years (TABLES 3 and 4). Among 1298 patients enrolled across both studies, no cases of resistance to VEMLIDY were reported.1,7,14-18

SAFETY

The US prescribing information for VEMLIDY contains a boxed warning on post treatment severe acute exacerbation of hepatitis B. Due to the risk of development of HIV-1 resistance, VEMLIDY alone is not recommended for the treatment of HIV-1 infection. Renal impairment, including cases of acute renal failure and Fanconi syndrome, has been reported with the use of tenofovir prodrugs in both animal toxicology studies and human trials. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues, including TDF—another prodrug of tenofovir—alone or in combination with other antiretrovirals.7

VEMLIDY and TDF have shown similar rates of adverse events (AEs). The most common AEs (all grades) reported in at least 5% of patients in the VEMLIDY group are listed in TABLE 5.7,15

RENAL AND BONE SAFETY

The effects of VEMLIDY and TDF on renal laboratory parameters and bone mineral density (BMD) were compared in a pooled analysis of data from Studies 108 and 110. VEMLIDY showed reduced effect on renal safety parameters and less impact on BMD compared with TDF (FIGURES 2 and 3).7,10,13-16,19,20

At Week 96, 11% of patients in the VEMLIDY group and 25% of patients in the TDF group had a BMD decline at the lumbar spine of 5% or greater; the corresponding percentages at Week 144 were 12% (VEMLIDY) and 24% (TDF). In addition, at Week 96, 5% of patients in the VEMLIDY group and 13% of patients in the TDF group had a BMD decline at the femoral neck of 7% or greater; the corresponding percentages at Week 144 were 9% (VEMLIDY) and 16% (TDF).7,14-16

At year 3, patients who received VEMLIDY had less decline in estimated glomerular filtration rate by the Cockcroft-Gault analysis of studies 108 and 110. VEMLIDY showed reduced effect on renal safety parameters and less impact on BMD compared with TDF (FIGURES 2 and 3).7,10,13-16,19,20

IMPORTANT SAFETY INFORMATION (continued)

Warnings and Precautions (continued)

- **New Onset or Worsening Renal Impairment:** Cases of acute renal failure and Fanconi syndrome have been reported with the use of tenofovir prodrugs. In clinical trials of VEMLIDY, there have been no cases of Fanconi syndrome or proximal renal tubulopathy (PRT). Patients with impaired renal function and/or taking nephrotoxic agents (including NSAIDs) are at increased risk of renal-related adverse reactions.

Discontinue VEMLIDY in patients who develop clinically significant decreases in renal function or evidence of Fanconi syndrome. Monitor renal function in all patients—See Dosage and Administration.

- **Lactic Acidosis and Severe Hepatomegaly with Steatosis:** Fatal cases have been reported with the use of nucleoside analogs, including tenofovir DF. Discontinue VEMLIDY if clinical or laboratory findings suggestive of lactic acidosis or

Please see additional Important Safety Information for VEMLIDY throughout this article. Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.
method (eGFR$_{\text{CG}}$), and patients receiving VEMLIDY had less decline in BMD at the hip and spine compared with patients who received TDF.$^{7,10,13-16,19,20}$

It is important to note that the long-term clinical significance of these renal laboratory changes on adverse reaction frequencies between VEMLIDY and TDF, and of these BMD changes, is not known. Studies evaluating outcomes through year 8 are ongoing.7

Differences in certain lipid parameters were observed in patients treated with VEMLIDY compared with TDF in both studies at Week 96 and Week 144. These differences included mean changes in fasting low-density lipoprotein (LDL) cholesterol and triglycerides of +7 mg/dL and +13 mg/dL, respectively, for VEMLIDY versus −10 mg/dL and −7 mg/dL for TDF from baseline to Week 96. Mean changes for LDL and triglycerides of +8 mg/dL and +18 mg/dL, respectively, for VEMLIDY and −8 mg/dL and −2 mg/dL, respectively, for TDF were observed at Week 144. A total of 6% of patients who received VEMLIDY and 1% of patients who received TDF had a fasting LDL cholesterol greater than 190 mg/dL at Week 96; 7% of patients who received VEMLIDY and 1% of patients who received TDF had a fasting LDL cholesterol greater than 190 mg/dL at Week 144. The mean change in the total cholesterol to high-density lipoprotein cholesterol ratio at Week 96 and Week 144 from baseline was 0 for both VEMLIDY and TDF.7,15

Renal and Bone Safety in Patients Who Switched from TDF to VEMLIDY at Week 96

A pooled analysis was conducted of patients on open-label treatment from Week 96 through Week 144 (48-week safety data). Patients who switched from TDF to VEMLIDY at Week 96 showed an improvement in eGFR$_{\text{CG}}$ at Week 144. The median change in eGFR$_{\text{CG}}$ from Week 96 to Week 120 was −0.6 mL/min in subjects who remained on VEMLIDY and +1.8 mL/min in subjects who switched from TDF to VEMLIDY.7 The median change in eGFR$_{\text{CG}}$ from baseline to Week 144 was −1.0 mL/min, versus −4.8 mL/min seen at Week 96 prior to the switch to VEMLIDY (Figure 4).7,15

The long-term clinical significance of these renal laboratory changes on adverse reaction frequencies between VEMLIDY and TDF is not known.7

Similarly, patients who switched from TDF to VEMLIDY at Week 96 experienced an improvement in spine and hip BMD at Week 144. The mean percentage change in lumbar spine and total hip BMD, respectively, from Week 96 to Week 120 was +0.6% and 0% in patients who remained on VEMLIDY, and +1.7% and +0.6% in those who switched from TDF to VEMLIDY. At Week 144, the mean changes in lumbar spine and total hip BMD from baseline were −1.3% and −1.7%, respectively, and about −3% mean change from baseline at Week 96, prior to switching. Patients who remained on VEMLIDY had a mean BMD change of −0.5% from baseline at Week 144 at both the lumbar spine and total hip. The long-term clinical significance of these BMD changes is not known.7,15

The safety profile of VEMLIDY in patients who remained on VEMLIDY in the open-label phase through Week 144 was similar to that of patients who switched from TDF to VEMLIDY at Week 96. Overall, VEMLIDY maintained similar viral suppression as TDF with less impact on renal and bone safety parameters.$^{7,10,13-16,19,20}$

Important Safety Information (continued)

- **Lactic Acidosis and Severe Hepatomegaly with Steatosis (continued)**
 pronounced hepatotoxicity develop, including hepatomegaly and steatosis in the absence of marked transaminase elevations.

- **Adverse Reactions**
 Most common adverse reactions (incidence ≥5%; all grades) were headache, abdominal pain, cough, back pain, fatigue, nausea, arthralgia, diarrhea, and dyspepsia.

Please see additional Important Safety Information for VEMLIDY throughout this article.
Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.
IMPORTANT SAFETY INFORMATION (continued)

Drug Interactions

- Coadministration of VEMLIDY with drugs that reduce renal function or compete for active tubular secretion may increase concentrations of tenofovir and the risk of adverse reactions.
- Coadministration of VEMLIDY is not recommended with the following: oxicarbapen, phenobarbital, phenytoin, rifabutin, rifampin, rifapentine, or St. John’s wort. Such coadministration is expected to decrease the concentration of tenofovir alafenamide, reducing the therapeutic effect of VEMLIDY. Drugs that strongly affect P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) activity may lead to changes in VEMLIDY absorption.

HIV antibody testing should be offered to all HBV-infected patients before initiating therapy with VEMLIDY, and if positive, an appropriate antiretroviral combination therapy should be used. Patients should tell their health care provider about the use of all medications, as VEMLIDY may interact with other drugs. Because VEMLIDY is a substrate of P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP), drugs that affect the activity of these proteins may alter the absorption and plasma concentrations of tenofovir alafenamide. Furthermore, because tenofovir is primarily excreted by the kidneys, caution should be used when coadministering VEMLIDY with other renally eliminated drugs as this may increase the risk of AEs and increase concentrations of tenofovir.

Inform patients that discontinuation of anti-hepatitis B therapy, including VEMLIDY, may result in severe acute exacerbations of hepatitis B. Prior to or when initiating VEMLIDY, and during treatment on a clinically appropriate schedule, assess serum creatinine, eCrCl, urine glucose, and urine protein in all patients. Also assess serum phosphorus in patients with chronic kidney disease. Treatment should be discontinued in patients who develop symptoms or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity.

Please see additional Important Safety Information for VEMLIDY throughout this article.

Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.
CO-PAY AND PATIENT SUPPORT PROGRAMS
VEMLIDY® (tenofovir alafenamide) patient support programs assist with out-of-pocket costs and patient access to medication. The VEMLIDY Co-Pay Coupon Program (www.vemlidyhcp.com/copay_patient_support/) and the Gilead Advancing Access Program (www.gileadadvancingaccess.com) can be accessed online.

REFERENCES

©2019 Gilead Sciences, Inc. All rights reserved. VEMP0307

IMPORTANT SAFETY INFORMATION (continued)

Consult the full prescribing information for VEMLIDY for more information on potentially significant drug interactions, including clinical comments.

Dosage and Administration
• Testing Prior to Initiation: HIV infection.
• Prior to or when initiating, and during treatment: On a clinically appropriate schedule, assess serum creatinine, estimated creatinine clearance, urinary glucose, and urine protein in all patients. In patients with chronic kidney disease, also assess serum phosphorus.

Indication
VEMLIDY is indicated for the treatment of chronic hepatitis B virus (HBV) infection in adults with compensated liver disease.

Please see additional Important Safety Information for VEMLIDY throughout this article. Please click here for full Prescribing Information for VEMLIDY, including BOXED WARNING.